SPECIAL TOPICS COURSE Fall 2006

The Pennsylvania State University
Department of Electrical Engineering

EE 597I – Intelligent Control

Time: TR 1:00 – 2:15PM Room: 201 Electrical Engineering West

Prerequisite: EE 428 (Control Engineering) or Graduate Standing

References: Lecture Notes and Handouts

Course Objectives:
The course will involve (i) gaining an understanding of the functional operation of a variety of intelligent controls and modern heuristic optimization techniques, (ii) the study of control-theoretic foundations of intelligent control systems, and (iii) use of the computer for simulation and evaluation of computational intelligence techniques. The objective will be to gain a “hands-on” working knowledge of several of the main techniques of computational intelligence and an introduction to some promising research directions.

Course Outline:
The course focuses on providing an introduction to the emerging area of intelligent control and optimization using a control-engineering approach. The course will be taught in two 75 min lectures each week for a semester (15 weeks):

1. Introduction (1 week):
 Intelligent Systems, Control and Intelligent Systems, Dimensions of Intelligent Systems, Working Definitions; Techniques in Intelligent Control; Control System Architectures; Need for Learning, Learning and Adaptation, Learning Algorithms

2. Decision-Making Techniques (1 week):

3. Neural Network Architectures for Modeling and Control (1 week):
 Representation of Plants; Modeling Architecture; Supervised Control Architectures; Reinforcement Learning Systems; Adaptive Critic Design, Parameterizing Linear Controllers
4. System Identification and Control (3 weeks):

 Neural Network Based Control System - Architecture for Diagonal Recurrent Neural Network (DRNN)-Based Control System, Neuro-Identifier, Neuro-Controller, Dynamic Backpropagation Algorithm for DRNN, Convergence and Stability; Optimal Tracking Neuro-Controller for Nonlinear Dynamic System, Neural Dynamic Programming

5. Fuzzy Systems (3 weeks):

6. Evolutionary Algorithms (3 weeks):

 Evolutionary Algorithms, Biological Basis, Genetic Algorithms (GA), Continuous and Discrete GA; Evolutionary Strategies, Evolutionary Programming; Differential Evolutionary Algorithm; Multiobjective Decision Problems, Pareto Multi-Objective Optimization

7. Swarm Intelligence (3 weeks):

 Particle Swarm Optimization, Ant Colony Swarms, Cultural Algorithms; Foraging; Collective Behavior in Natural Societies; Design, Control, and Optimization of Collective Artificial Systems

Grading Policy: Homeworks, Projects

 - Homeworks and Projects will involve small problems involving MATLAB programming.

Instructor: Kwang Y. Lee
 Professor of Electrical Engineering
 Room: 103 EE East
 Phone: 5-2621
 e-mail: kwanglee@psu.edu
 http://labs.ee.psu.edu/labs/powerlab