Today’s Outline

- System history and evolution
- Parallel Classification
 - System Architecture
 - Programming Model
- Design Limitations
- Future Technologies
 - FPGA
 - Cell Broadband Engine
 - GPU

In the Beginning - ENIAC

- Electronic Numerical Integrator and Computer
- By most is considered to be the first electronic computer
 - Constructed by Penn’s Moore School of Electrical Engineering from July, 1943
 - Unveiled at UPenn on February 15, 1946
- At a delivered cost of $500,000
ENIAC

- Weight: 27 tons
- Components
 - 17,468 vacuum tubes
 - 7,200 crystal diodes
 - 1,500 relays
 - 70,000 resistors
 - 10,000 capacitors
 - 5 million hand-soldered joints
- Roughly 8 feet by 3 feet by 100 feet
- 150 kW of power
- 5000 simple adds/subtracts per second

Other Computation Events in the 1940's

- 1944 - Relay-based Harvard-IBM MARK I provides vital calculations for the U.S. Navy
 - Grace Hopper becomes its programmer
- 1945 - Computer 'bug' was termed by Grace Hopper when programming the MARK II
- 1947 – Invention of the transistor
- 1948 - IBM SSEC (Selective Sequence Electronic Calculator)
 - contains 12,000 tubes
Famous Last Words

“Where a calculator like the ENIAC today is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and perhaps weigh only half a ton.”
– Popular Mechanics, March 1949

1950's

- 1951 - First business computer, the Lyons Electronic Office (LEO)
- 1951 - First commercial computer, the “First Ferranti MARK I” functional at Manchester University
- 1951 - Unisys UNIVAC I
- 1952 – First reliable magnetic drum memory
- 1952 – IBM 701 introduced
More Famous Last Words

“I think there is a world market for about five computers”
- Thomas J. Watson Jr., chairman of IBM (1943)

1950's

- 1953 – IBM 701 sold to scientific community
 - 19 built and sold

- 1954 – IBM 650 introduced
 - 1800 sold over its production lifetime

- 1954 - FORTRAN

- 1955 – IBM 702
1950's

- 1955 – Bell Labs introduces first all transistor computer
- 1955 – ENIAC shut down for final time
- 1957 – IBM announces no more vacuum tube computers, releases first all transistor computer (contains 2000 transistors)
- The first microchip was demonstrated on September 12, 1958.

Let's jump to 1969

- AT&T Bell Labs develops UNIX
- AMD founded
- First laser printer (Xerox)
- Advanced Research Projects Agency Network, ARPANET
- CDC 7600, first supercomputer
CDC 7600

- small-core memory of 64k 60-bit words
- clock speed of 27 nanoseconds
- Instruction pipeline
- Peripheral processors
- No software!
- Prone to breakdown!!!

Cray 1 - 1976

- Hand Crafted!
- Hundreds of circuit boards and thousands of wires that had to fit just right
- Special cooling required
- Needed room for:
 - the big main unit,
 - the huge power supply next door,
 - couple of mainframe's just to feed data
- Seymour Cray's secret - “Figure out how to build it as fast as possible, completely disregarding the cost of construction.”
Cray 1 - Specs

- "C" shape
 - enabled integrated circuits to be closer together
 - No wire in the system > four feet long
- low-density/very high-speed ECL circuits
 - required special cooling
- 133 megaflops
- 8 MB memory
- First installed at LLNL
- 85 built
- $5 - $8.8 million

Cray 1 - Specs

- 200,000 specialized low-density ECL integrated circuits

- Programming Model:
 - Vector processing
 - 8 vector registers, 64 64-bit words each

- Software:
 - Cray Operating System (COS),
 - Cray Fortran Compiler,
 - Cray Assembler Language
Vector Processing

- Operate on all of the data "from here to here" to all of the data "from there to there"
- Reads a single instruction from memory, and "knows" that the next address will be one larger than the last
- Significant performance improvement

Approaching the 'modern' era

- 'On chip' parallelism
 - multiple registers
 - instruction and data pipelines
 - vector processing
 - low level instructions, compilers that understand them, programmer who know how to use them
- Vector processing easy
- Expensive, niche market machines
Flynn's Taxonomy

- One of the more widely used classifications, in use since 1966

- Distinguishes multi-processor computer architectures according to how they can be classified along the two independent dimensions
 - Instruction
 - Data

- Each of these dimensions can have only one of two possible states
 - single
 - multiple

Flynn's Taxonomy

- SISD SIMD
- MISD MIMD
Single Instruction, Single Data

- Single instruction: only one instruction stream is being acted on by the CPU during any one clock cycle
- Single data: only one data stream is being used as input during any one clock cycle
- Deterministic execution
- This is the oldest and until recently, the most prevalent form of computer

Single Instruction, Multiple Data

- Single instruction: All processing units execute the same instruction at any given clock cycle
- Multiple data: Each processing unit can operate on a different data element
- This type of machine typically has an instruction dispatcher, a very high-bandwidth internal network, and a very large array of very small-capacity instruction units
- Best suited for specialized problems characterized by a high degree of regularity, such as image processing
- Synchronous (lockstep) and deterministic execution
Mult. Instruction, Single data

- Single data stream fed to multiple processing units
- Each processing unit operates on the data independently via independent instruction streams
- Few actual examples of this class of parallel computer have ever existed
- Some conceivable uses might be:
 - multiple frequency filters operating on a single signal stream
 - multiple cryptography algorithms attempting to crack a single coded message.

Mult. Instruction, Mult. Data

- Most modern computers fall into this category
- Multiple Instruction: every processor may be executing a different instruction stream
- Multiple Data: every processor may be working with a different data stream
- Execution can be synchronous or asynchronous, deterministic or non-deterministic
- Examples: most current supercomputers, networked parallel computer, 'grid' computing, SMP, some PC's
A graphical Flynn

Early Parallel Systems

- Thinking Machines CM1
 - hypercube arrangement
 - 1000’s of very simple processors
 - each with its own RAM
 - SIMD

- CM2
 - Up to 64k single-bit processors
 - 1 fp coprocessor per 32 procs
 - hypercube

- CM5
 - MIMD
 - Fat tree
 - SPARC, SuperSPARC
 - as seen in Jurassic Park
Next Generation

- IBM SP
- SGI Origin
- NEC SX series
- COTS
- Model being driven by cost!

Memory Architecture

- Shared Memory
 - UMA
 - NUMA
- Distributed Memory
Memory Architecture

- Hybrid

![Diagram of hybrid memory architecture]

Advantages
- Global address space provides a user-friendly programming perspective to memory
- Data sharing between tasks is both fast and uniform due to the proximity of memory to CPUs

Disadvantages
- Primary disadvantage is the lack of scalability between memory and CPUs
- Adding more CPUs can geometrically increases traffic on the shared memory-CPU path
- Increase traffic associated with cache/memory management
- Expensive

Shared Memory

- Advantages
 - Global address space provides a user-friendly programming perspective to memory
 - Data sharing between tasks is both fast and uniform due to the proximity of memory to CPUs

- Disadvantages
 - Primary disadvantage is the lack of scalability between memory and CPUs
 - Adding more CPUs can geometrically increases traffic on the shared memory-CPU path
 - Increase traffic associated with cache/memory management
 - Expensive
Distributed Memory

- **Advantages**
 - Memory is scalable with number of processors
 - Each processor can rapidly access its own memory without interference and without the overhead incurred with trying to maintain cache coherency
 - Cost effectiveness: can use commodity, off-the-shelf processors and networking.

- **Disadvantages**
 - Programmer responsible for data communication details
 - It may be difficult to map existing data structures, based on global memory, to this memory organization
 - NUMA access times

Hybrid Model

- Shared memory component is usually a cache coherent SMP machine
 - Processors on a given SMP can address that machine's memory as global.

- Distributed memory component is the networking of multiple SMPs
 - SMPs know only about their own memory
 - Network communications are required to move data from one SMP to another.

- Most current trend

- Advantages and Disadvantages: whatever is common to both shared and distributed memory architectures
Programming Models

- Common models
 - Shared Memory
 - Threads
 - Message passing
 - Data Parallel
 - Hybrid

- Parallel programming models exist as an abstraction above hardware and memory architectures

- Although it might not seem apparent, these models are NOT specific to a particular type of machine or memory architecture
 - These models can theoretically be implemented on any underlying hardware

Shared Memory Model

- All tasks share a common address space
 - read and write asynchronously

- Various mechanisms such as locks / semaphores may be used to control access to the shared memory

- No notion of data "ownership"
 - no need to specify explicitly the communication of data between tasks
 - Program development can often be simplified

- A disadvantage in terms of performance is that it becomes more difficult to understand and manage data locality
Distributed Memory Model

- Message Passing
 - de facto standard today
- Programmer is responsible for determining all parallelism
- Set of tasks that use their own local memory during computation
 - Multiple tasks can reside on the same physical machine as well across an arbitrary number of machines.
- Tasks exchange data through communications by sending and receiving messages
- Data transfer often needs cooperative operations to be performed by each process.

Hybrid Model

- Some combination of above
 - Shared memory / MPI most common
 - Threads / MPI, etc.
- Lends itself well to the increasingly common hardware environment of networked SMP machines
- Idea is to leverage benefits from each model
Discussion

- Advantages / Disadvantages?

Future Direction

- FPGA
- Cell Broadband Engine
- GPU
FPGA

- Field programmable gate array
- A semiconductor device containing programmable logic components and programmable interconnects
- Can be reprogrammed at "run time"
 - reconfigurable computing or reconfigurable systems
 - Current FPGA tools, however, do not fully support this methodology
- Generally slower and hotter than ASICs
- Application area is any algorithm that can make use of the massive parallelism offered by their architecture

Cell Broadband Engine

- Jointly developed by STI, an alliance of Sony, Toshiba, and IBM
- combines a light-weight general-purpose processor with multiple GPU-like coprocessors into a coordinated whole, a feat which involves a novel memory coherence architecture for which IBM received many patents
- scientific calculations 3 to 12 times faster than any desktop processor at a similar clock speed
- Software adoption remains a key issue in whether Cell ultimately delivers on its performance potential
First Application?

- Roadrunner - 1\(^{st}\) petaflop machine
- Opteron / Cell hybrid
 - Cell as accelerator
 - 16k processors
 - 1:1 match
- Los Alamos National Lab
- 2008 deployment

GPU Accelerator

- Uses high end graphics card attached via PCI-E bus
- *PeakStream Computing*
- C/C++ API
- Fortran coming
- Single Precision! (but DP coming soon)
As always, when trying to predict the future...

“640 K [of computer memory] ought to be enough for anybody.”
- Bill Gates, 1981

“This telephone has too many shortcomings to be seriously considered as a means of communication. The device is inherently of no value to us.”
- Western Union internal memo (1876)
Credits

- Blaise Barney "Introduction to Parallel Computing"
 http://www.llnl.gov/computing/tutorials/parallel_comp/

- Wikipedia
 - CDC 7600 -

- PeakStream Computing

- IBM Cell Broadband Engine -

- National Center for Atmospheric Research