Home   Research   Resource   About us   Sitemap   
R Packages
 Funmap Package
 EIP Package
 R/fGWAS Package
 HaruPDF Package
 3FunMap Software
 fGWAS Software

Home>>Resource >> Software

Source for Paper:

Wavelet-Based Functional Clustering for Patterns of High-Dimensional Dynamic Gene Expression.


Functional gene clustering is a statistical approach for identifying the temporal patterns of gene expression measured at a series of time points. By integrating wavelet transformations, a power dimension-reduction technique, noisy gene expression data is smoothed and clustered allowing for new patterns of functional gene expression profiles to be identified. We implement the idea of wavelet dimension reduction into the mixture model for gene clustering, aimed to de-noise the data by transforming an inherently high-dimensional biological problem to its tractable low-dimensional representation. As a first attempt of its kind, we capitalize on the simplest Haar wavelet shrinkage technique to break an original signal down into its spectrum by taking its averages and differences and, subsequently, detect gene expression patterns that differ in the smooth coefficients extracted from noisy time series gene expression data. The method is shown to be effective on simulated data and and on recent time course gene expression data. Supplementary Material is available at www.liebertonline.com.

To cite this article:

Bong-Rae Kim, Timothy McMurry, Wei Zhao, Rongling Wu, Arthur Berg. Wavelet-Based Functional Clustering for Patterns of High-Dimensional Dynamic Gene Expression.Journal of Computational Biology. August 2010, 17(8): 1067-1080.


Data set and source code are included in the following links.



Last updated:


Copyright© 2009-, Center for Statistical Genetics, Penn State University, All Rights Reserved.