EDSGN100
Toys’N MORE

Harold (Hal) N. Scholz
Pennsylvania State University Lehigh Valley
hns12@psu.edu

EDSGN100

• Project oriented course
 – Take a project through prototype phase
 • Customer needs
 • Product Specs
 • Concept generation/Selection
 • Prototype(s)
 • Testing
• Team based
 – 3-5 member teams
 – Decision making
 – Presentations at each phase
• Classroom run as if a company
 – Each group is a design group in the company
 – They are responsible for completing their design
 – Must report progress, issues and schedule at each step

Course Given Using Different Project Definitions

• Fall 2009 Semester Project
 – Each team could design any toy
 – Must design and build a prototype
 – Students came up with their own ideas for projects
 – Option to use Lego Mindstorm Robots
• Spring 2010 - 2012 Semester Projects
 – Must build robot that can autonomously navigate a maze
 – Each group came up with their own design and programming

Toy Project

• Defined what ideas as to what to build
• Contacted prospective customers
• Presented ideas and customer feedback and determined the project they would complete
• Developed concepts and went through selection process
• Lego Mindstorms® NXT 2.0 Robots were available for use
Toy Project

• Pros
 – Students were initially very enthusiastic
 • They bought into their own ideas
 – Diverse set of projects
 – From Customer needs through concept phase all students were very involved
• Cons
 – In the prototyping stage, one person in each group tended to take over
 – Results ended up being more of a “craft” project than an engineering project
 – Some students basically withdrew from the process and let the “expert” take over

Robotics Toy Project

• Given a very specific set of requirements
 – Maze dimensions, wall heights, gaps, ...
 – Given a task – find the red ball and bring it back to the starting point
 – Robot must be autonomous
• Must include a functional 3D part
 – Makerbot 3D printer
 – CNC milling machine
 – Fall 2012
 – Design part in solidworks
• Actual mechanisms, programming and looks must be determined by each group
• Final project grade based on
 – Functionality in maze
 – Time bonus
 – Customer needs bonus

Robotics Project

• Pros
 – Project well defined
 – Project is possible to complete
 – Challenging engineering issues
 • Mechanical
 – 3D part
 – Robustness
 – Sensor placement
 • Software
 – Algorithm
 – Implementation
 – Mechanical / Software interactions
 • Unexpected issues
 – Gaps, light changes, going in a straight line
• Cons
 – Initial phase is more defined
 – Customer needs becomes less exciting

Lego Mindstorms NXT programming

• Graphical
• Most common functions available
 – Includes Variables
 – Includes Arrays
 – Logic functions
 – Sensors
 – Motors
 – Loops
 – Conditionals (switches)
 – Subroutines (myblocks)
• Somewhat intuitive – do not need to be a programmer
• Cumbersome at times for students with programming knowledge
• Program stability and file integrity has been an issue
 – Save often as new project
 – Back up with pack and go if using myblocks
Lego Mindstorms NXT programming

Group Dynamics Robotics

- Less enthusiasm during the Customer needs phase since much of the project was defined
- Conflict resolution
 - Very heated discussions over problem solutions
- Leadership changed hands
- Initially, the well organized students lead project to get things completed on time
- Once into the prototyping, students with programming came out of the background and became group leaders
- Students with strong mechanical background lead efforts
 - Construction
 - Test/repair
 - 3D part
- All had to work together to get the hardware and software to operate together

Prototype testing

Robot Video
Lego Robotics

- Equipment
- LEGO MINDSTORMS Education NXT Base Set
 - Must have, includes computer, motors, sensors
- MINDSTORMS Education Set
 - Many extra parts, allows flexibility
- HiTechnic Color Sensor
 - Only one available when we purchased
- Cost ~$400/set
- Maze – materials <$100

Makerbot Thing-O-Matic

- 3D printer
- Kit form
 - 1 semester project for 2 students
- Newest model cost ~$1700 and is prebuilt
- Part built up in clear view
- Machine is open source
 - All parts design info available
 - SW is open source
- Does require maintenance!

CNC Milling Machine

Deepgroove1

- http://www.deepgroove1.com/cncmill.htm
- 4 Axis machine
 - X, Y, Z + rotation about X
 - ~$2,100
- Mach3 controller
 - A bit of a problem installing drivers on some machines
 - ~$174 extra
- Pycam CAM
 - Convert to gcode
 - Not production worthy, but works for 3D
 - Manual edits for efficiency
 - http://pycam.sourceforge.net/
 - Open source

CNC Milling Machine

Rocket Nose Cone
Other Observations

• Robotics project is well defined
 – Gives students a target and consequences
 – Increasing the emphasis on results improves focus
• 3D part(s) keep everyone busy
• Groups larger than 4 do not work as well
• Groups of 3 are OK, but if a student drops, 2 could be an issue

Acknowledgements

• The Toys ‘n More project at Penn State provided funds and inspiration for this project.
• The Toys ‘n More project is supported by NSF grant (0756992).