Storage Concepts

Steve Kellogg
Director
Applied Information Technologies
Information Technologies Services
Penn State University
Storage/Memory

- Basic terminology and concepts
- Memory Hierarchies
- Filesystems
Terminology

- Memory v. Storage
 - data elements v. files
- Cache memory: Highest speed memory
- Main Memory
- Paging or swap: Addressing larger than main memory
- Block I/O
- RAID: Redundant Array of Independent Devices
- JBOD: Just a bunch of disks
Terminology

- Memory Addressing
 - Real
 - VMM: virtual memory management
- Disk Technologies: DASD, SCSI, IDE, ATA, SATA, Fibre Channel, SSA
- HDAs: Head Disk Assemblies
- Hierarchical Storage
- Memory interleave: noncontiguous arrangement of data
RAID

Redundant Array of independent Devices

<table>
<thead>
<tr>
<th>RAID</th>
<th>Description</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Striping</td>
<td>Highest perf.</td>
<td>No Redundancy</td>
</tr>
<tr>
<td>1</td>
<td>Mirroring</td>
<td>Redunancy</td>
<td>Low Performance</td>
</tr>
<tr>
<td>3</td>
<td>Striping w/ Parity Drive</td>
<td>High throughput</td>
<td>Poor perf. For random, small I/O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data protection</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Striping & Parity spread out</td>
<td>High read rate</td>
<td>Can have poor write perf.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data protection</td>
<td>Disk failure adversely affect perf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Most common</td>
</tr>
<tr>
<td>10</td>
<td>RAID 0 + 1</td>
<td>High perf</td>
<td>Expensive</td>
</tr>
<tr>
<td></td>
<td>W/ data protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Good for databases</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Typical Memory Hierarchy

- CPU
 - L1 Cache
 - L2 Cache
 - Interleaved Memory
 - Disks, SSD, ...
 - Tape, Optical, ...

- Access Speed Increasing
- Capacity Increasing
- Virtual Memory

- File
- Page
- Line
- Word

- Virtual Memory
- CPU
- CPU
Basic Tenants of performance

- Concern yourself with where your data is.
- Understand the relative speed of access for all of your data.
- Cache hit is good
- Cache miss is not so good.
- Different systems have different memory designs
- Paging (or swap) is bad for performance
Filesystems

• Local
 – A file store available to a given system
 • NTFS, UFS, XFS, JFS, JFS2, FAT

• Distributed
 – Access to files from multiple systems

• Either can be backed by a hierarchy
 – Filesystem has an data structure in the filesystem that points to the location of file and the file can be on tape or other mass store device
Distributed Filesystems

• Filesystem accessible from multiple systems
 – NFS: Network File System (SUN)
 – CIFS: Common Internet File System (Microsoft)
 – AFS: Andrew File System (CMU/Transarc)
 – DFS: Distributed Filesystem (DCE)
 – GPFS: General Parallel File System (IBM)

• Tradeoffs:
 – Simplicity v. complexity, workgroup v. enterprise-wide, performance, cost, manageability
Distributed Filesystems

- Ubiquitous access to files
 - All types of files
 - Personal
 - Home directories
 - Shared files
 - Binaries
 - Data
 - Spread sheets
 - ...
 - EMAIL IS NOT A SHARED FILESYSTEM!!!!!!!!!!
Distributed Filesystems

- Enterprise-WIDE
 - Easy access throughout the enterprise
 - Opportunity to leverage reference of locality
 - Caching
 - Replication
 - Distributed servers that have rw files
 - SINGLE GLOBAL Namespace!!

- Truly Standards based
 - The world IS NOT all Windows (not yet, anyways)
Distributed Filesystems

- Needs to exist within the enterprise identity management system.
 - Single identity
 - Kerberos
 - Registry (LDAP)
 - AUTH/AUTHZ
 - Group and/or roll based authz
Distributed Filesystems

• Needs to be secured
 – Spectrum of security options
 – W/ a rich, reliable ACL capability
 – User AND Group based
Distributed Filesystems

• Yield significant efficiencies in disk utilization.
• Yield significant efficiencies in distributed system's administration.
 – Large-scale user management
 – Large-scale data management
 – Large-scale application management
• Yield simplified data policy enforcement.
 – Location in the namespace...
An Example of a Distributed File System

- One global name space
 - /.../dce.psu.edu/fs/

- Everyone get's personal disk space
 - 500MB
 - /.../dce.psu.edu/fs/users/k/e/kellogg
 - 10MB for www.personal.psu.edu
 - /.../dce.psu.edu/fs/users/k/e/kellogg/www
 - WebMail (and IMAP)
 - /.../dce.psu.edu/fs/users/k/e/kellogg/mail
DFS cont'd

• **Web services**
 - www.its.psu.edu
 - /.../dce.psu.edu/fs/services/www/dept/its/
 - www.clubs.psu.edu
 - /.../dce.psu.edu/fs/services/www/clubs/wwwroot/

• **Administrative Data**
 - /.../dce.psu.edu/fs/admin/
Use of DFS at Penn State

Data feeds
AIS, OHR, Registrar

/s/de.psu.edu/fs

/services/www/dept/hbg/

Client Access:
Windows
Mac
Unix
Linux

Webmail Svrs
Sun

www.personal.psu.edu
AIX

www.hbg.psu.edu
AIX

...