Stochastic Programming for Optimizing Business Supply Chains

Ching-Hua Chen-Ritzo
Ph.D. Candidate
Smeal College of Business Administration
Penn State University
Outline

- Introduction to business supply chains
- Optimizing a configure-to-order (CTO) supply chain
- Overview of stochastic programming (SP)
- Application of SP to CTO problem
- Conclusions
What is a Supply Chain?

- A network of retailers, distributors, transporters, storage facilities and suppliers that participate in the sale, delivery and production of a particular product or service to customers.

- A supply chain may include multiple companies which may be located in multiple countries.
What is Supply Chain Management?

- Supply Chain Management (SCM) refers to the coordination of the ‘flow’ of information, cash, and materials between the ‘nodes’ in a supply chain network.

- **Information Flows**
 - Customer Orders, Demand Forecasts, Inventory Levels, Staffing levels

- **Cash Flows**
 - Inflow: Customer Payments, Sale of Assets
 - Outflow: Purchase of supplies, assets, services

- **Materials**
 - Raw materials, work-in-progress (WIP), finished goods
SCOR Reference Model

Suppliers

SOURCE

MAKE

DELIVER

Customers

PLAN

RETURN
Levels of Supply Chain Planning

- **Strategic**
 - Long term, on the order of years
 - E.g., facility location, new product development, supplier selection

- **Tactical**
 - Medium term, on the order of weeks/months
 - E.g., Demand forecasting, workforce planning, inventory planning

- **Operational**
 - Short term, on the order of days or minutes.
 - E.g., machine scheduling, staff scheduling, order fulfillment
Sales & Operations Meeting

Sales targets → Commitment to Sales

Manufacturing

MRP explosion → Supply Commitment

Suppliers

- sales
- marketing
- accounting
- finance
- manufacturing

DEMAND/SUPPLY PLANNING

Want High Revenue
Want High Profit

NEED SUPPLY = DEMAND
Outline

- Introduction to business supply chains
- A configure-to-order (CTO) supply chain problem
- Overview of stochastic programming (SP)
- Application of SP to CTO problem
- Conclusions
A Configurable Product

- A configurable product is **modular** in structure, and is assembled from standardized components.
- e.g., Computers (PCs and Mainframes), cars, homes, travel packages, course schedules.
Configure-to-Order Supply Chains

- In a configure-to-order supply chain:
 - The *quantity* of each component required to assemble a finished product is uncertain prior to receiving the product order. (i.e., *Order Configuration Uncertainty*)
 - When dealing with several configurable products, components may be used by more than one product (i.e., *Component Commonality*)
 - Configure-to-Order systems are more common today, as the practice of mass customization proliferates.
Order Configuration Uncertainty

- Consider a configurable product that may use component A and/or component B.

- Along with component commonality, configuration uncertainty makes supply/demand planning in a CTO system very challenging.
Demand/Supply Planning

- Tactical level planning (32 wk rolling horizon)
Demand/Supply Optimization

- **Explosion Problem**
 - Initial Sales Targets
 - EXPLOSION
 - Optimal Supply Request
- **Implosion Problem**
 - Suppliers
 - IMPLOSION
 - Supply Commitment
 - Optimal Commitment to Sales
Outline

- Introduction to business supply chains
- A configure-to-order (CTO) supply chain problem
- **Overview of stochastic programming (SP)**
- Application of SP to CTO problem
- Conclusions
Quick Intro to Linear Programming

- Parameters (c)
- Decision Variables (x)
- Constraints ($Ax = b$)
- Feasible Region
- Objective Function ($\text{max. } c^T x$)
- Optimal solution (x^*)
Linear Programming Constraint Matrix
Linear Programming Constraint Matrix
Stochastic Programming

- In Stochastic Programming, one or more set(s) of parameters (e.g., c, A, b) may consist of random variables (discrete or continuous).

- Therefore, the feasibility of any solution, x, may depend on the realization of these random variables.

- A particular combination of realizations of parameters is referred to as a scenario.

- Typically the objective is to maximize or minimize an expected value function.
Two-Stage Stochastic Programs with Recourse

- 2 sets of decision variables
 - 1st stage variables, x
 - 2nd stage variables, y

- In the first stage, random parameter realizations are unknown, and x is decided.

- In the second stage, random parameters are realized and y is decided, given x.

- Multi-stage SPs are extensions of the 2 stage SP with non-anticipatory constraints.
Outline

- Introduction to business supply chains
- A configure-to-order (CTO) supply chain problem
- Overview of stochastic programming (SP)
- Application of SP to CTO problem
- Conclusions
Demand/Supply Optimization

Explosion Problem
- Initial Sales Targets
- EXPLOSION
- Optimal Supply Request
- Suppliers

Implosion Problem
- Optimal Commitment to Sales
- SUPPLIERS
- IMPLOSION
- Supply Commitment
Explosion

<table>
<thead>
<tr>
<th>Given</th>
<th>A set of m products and n components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial sales targets for each product over T weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Stage Problem</th>
<th>Determine a set of optimal supply requests for each component over T weeks</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>End of First Stage</th>
<th>Actual order configurations are realized</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Second Stage Problem</th>
<th>Allocate requested supply among products assuming that demand is equal to the initial sales targets, for all T weeks.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Objective</th>
<th>Maximize total expected profits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Profit = Revenue – Cost (ordering, inventory, shortage)</td>
</tr>
</tbody>
</table>
Demand/Supply Optimization

Explosion Problem

- Initial Sales Targets
- EXPLOSION
- Optimal Supply Request

Suppliers

Implosion Problem

- Supply Commitment
- IMPLOSION
- Optimal Commitment to Sales

Optimal Supply Request
Implosion

| Given | A set of \(m \) products and \(n \) components
| | Initial sales targets for each product over \(T \) weeks
	Component supply commitments over \(T \) weeks
First Stage Problem	Determine a set of optimal **sales targets** for each product over \(T \) weeks
End of First Stage	Actual order configurations are realized
Second Stage Problem	**Allocate** committed supply among products assuming demand is equal to the optimal **sales targets**, for all \(T \) weeks. (May also consider supply flexibility)
Objective	Maximize total expected profits, less potential **penalties for deviating from the initial sales targets**.
Solving 2 Stage SPs

- Backwards Induction
 - solve 2nd stage, then 1st stage, exactly
 - Not practical for realistically sized supply chain problems

- Simultaneously, using linear programming
- Iteratively, using decomposition methods
Constraint Matrix of Deterministic Equivalent for 2 Stage SP

Stage 1

Stage 2 (scenario 1)

Stage 2 (scenario 2)

Stage 2 (scenario 3)
Constraint Matrix of Deterministic Equivalent for 2 Stage SP
LP solvers

- Commercial
 - CPLEX
 - XPRESS
 - LINDO

- Open Source/Free
 - CLP (COIN-OR)
 - Soplex
 - GLPK
Decomposition Methods (in a nutshell)

- Multi-cut L-shaped method (Van Slyke & Wets 1969)
 - Solve only one scenario at a time
 - In each iteration
 - First solve first stage problem and obtain feasible solution x.
 - Then, solve K scenarios of second stage
 - Add constraints to the first stage problem to improve approximation of second stage problem
 - Repeat until termination criteria is satisfied.

Can be parallelized.
Linderoth & Wright 2002
Decomposition Methods (in a nutshell)

- Stochastic Decomposition (Higle & Sen 1996)
 - Solve each scenario only once
 - In each iteration
 - Solve first stage problem and obtain feasible solution x
 - Solve 1 new scenario of second stage
 - Add constraints to the first stage problem to improve approximation of second stage problem
 - Repeat until termination criteria is satisfied
Research Objectives

- To demonstrate the value of using stochastic models to address the following Configure-To-Order supply chain problems on a realistic scale:
 - Determine optimal component supply request to support a set of initial sales targets (i.e., the ‘explosion’ problem).
 - Determine optimal product sales targets for a given component supply commitment (i.e., the ‘implosion’ problem).

- To incorporate flexibility in supply into our model.
Data Set

- Using data provided by IBM, we solved a 5 product 279 component problem. (a ‘realistic’ problem could include 100+ products and 3000+ components)
- The problem is solved for a 32 week planning horizon.
- Component usage quantities are sampled from empirical distributions created from historical order configuration data.
- The problem is modeled as a 2 stage stochastic optimization problem and is solved using CPLEX.
The Value of Stochastic Modeling

Comparison of Expected Cumulative Profit for Explosion Problem

Comparison of Expected Cumulative Profit for Implosion Problem
Average Improvement Achieved Through the Use of Stochastic Models

<table>
<thead>
<tr>
<th>Definition</th>
<th>Explosion</th>
<th>Implosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td>0.04</td>
<td>-0.02</td>
</tr>
<tr>
<td>Revenue refers to the earnings from product sales.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backorder Costs</td>
<td>0.78</td>
<td>0.71</td>
</tr>
<tr>
<td>Per unit backorder costs are incurred when the targeted product volume cannot be produced due to component shortages.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holding Costs</td>
<td>0.21</td>
<td>-0.39</td>
</tr>
<tr>
<td>Per unit holding costs are incurred while excess components are held in inventory.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill Rate</td>
<td>0.35</td>
<td>0.24</td>
</tr>
<tr>
<td>The fill rate is the percentage of targeted sales that is fulfilled in a timely fashion.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profit</td>
<td>3.53</td>
<td>5.13</td>
</tr>
<tr>
<td>The difference between revenue earned and the sum of backorder and inventory costs.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effect of Supply Flexibility

Cumulative Commitment to Sales Under Various Degrees of Supply Flexibility

- 0%
- 10%
- 20%
- Target

Weeks vs. Relative Quantity of Product A
Future Work

- Our results suggest that:
 - Dealing with configuration uncertainty is effective in improving expected profits.
 - Accounting for supplier flexibility can improve the commitment to sales.

- Our current work involves implementing decomposition methods for dealing with larger problem sizes.

- The hope is to be able to incorporate large-scale stochastic optimization tools within the existing integrated demand & supply planning framework at IBM.
Acknowledgements

- This research is funded by a grant from IBM.
- Research collaborators:
 - Terry Harrison, Smeal College of Business
 - Tom Ervolina, IBM Research
 - Barun Gupta, IBM Integrated Supply Chain
Summary

- Supply chain management is central to the operations of many, if not all, goods and services providers.

- This presentation focused on a tactical planning problem (demand/supply planning) faced in configure to order supply chains.

- We address this problem using Stochastic Programming methods.

- Realistically sized problems require significant computational power and efficient LP solvers.