Application of Direct Simulations and 3-D Visualization to Evaluate the Influence of Mean Shear on the Dynamics of Turbulence*

James G. Brasseur
Department of Mechanical Engineering
The Pennsylvania State University

from thesis research of Winston Lin
currently with Honeywell Transportation and Power Systems, Torrance, CA, USA

in press, Fluid Dynamics Research, 2005
Turbulence Shear Flows: Structure

vortices within

Cumulonimbus with tornado
Vortices Within
Objectives

• Develop an analytical method to quantify and visualize concurrently local “structures”
 ➢ in vorticity, strain-rate and Reynolds stress

• Quantify and visualize the influence of mean shear on:
 ➢ the generation and evolution of structures in fluctuating vorticity
 ➢ the relationship between fluctuating strain-rate and vorticity structures

• Follow visually and quantitatively the birth, life and death of a hairpin vortex in shear flow
Methods

• DNS of homogeneous turbulent shear flow

• Algorithm for extracting “structures”

• Visualization (subjective), with local statistics

• Global statistics
DNS of Homogenous Turbulence

Isotropic Turbulence Simulation
256 × 128 × 128

Shear Turbulence Simulation
128 × 128 × 128

Initial Gaussian
N.-S. Eqn. ⇒ Fully Isotropic
Random Field Turbulence

$R^* \sim 22$

Shear Turbulence
$R^* \sim 65-75$

$S^* \sim$

S^* vs St
Structure Extraction Concept

Basic Methodology

3-D Turbulent Data Set

Extraction of 3-D Intermittent Regions

Ordering by Peak Intensity

Grouping for Subsequent Analysis

Low-Magnitude Fluctuations Set

Intermittent Regions (High-Magnitude Set)
“Structure” Extraction
“Structure” Extraction

Interconnected Structures
Isosurface Structure vs. “Structures”
Isosurface Structure vs. “Structures”

\[P(\omega^2) \]

\[\omega^2 \]
Isosurface Structure vs. “Structures”

\[P(\omega^2) \]
Isosurface Structure vs. “Structures”
Confirming the Hairpin
Enstrophy and Strain-rate Structures
Enstrophy and -uv Structures
Vorticity—Strain-rate Dynamics

\[
\frac{d\langle \omega^2 \rangle}{dt} = \langle P_{\omega^2} \rangle + \langle \overline{P}_{\omega^2} \rangle + \langle D_{\omega^2} \rangle
\]

\[
\frac{d\langle s^2 \rangle}{dt} = \langle P_{s^2} \rangle + \langle \overline{P}_{s^2} \rangle + \langle PR_{s^2} \rangle + \langle D_{s^2} \rangle
\]

\[
\langle \omega^2 \rangle = 2\langle s^2 \rangle
\]

\[
\langle P_{\omega^2} \rangle = 2\langle \omega_t s_{ij} \omega \rangle = -\frac{3}{2}\langle s_{ij} s_{jk} s_{ki} \rangle
\]

\[
\langle P_{s^2} \rangle = -\langle s_{ij} s_{jk} s_{ki} \rangle - \frac{1}{4}\langle \omega_t s_{ij} \omega \rangle = \frac{24}{13}\langle P_{\omega^2} \rangle
\]

In \(s_{ij} \) principle axes \((\alpha, \beta, \gamma) \):

\[
P_{\omega^2} = 2(\alpha \omega^2_{\alpha} + \beta \omega^2_{\beta} - |\gamma| \omega^2_{\gamma})
\]

\[
\beta_n \equiv \beta/(s^2 / 6)^{1/2}
\]
Alignment by Mean Shear

P(γ) of highest intensity \(\omega^2 \) structures
Alignment by Mean Shear

Shear Tends to Produce Squashed Vortex Tubes
Global Two-Dimensionalization and Alignment of Strain-rate Fluctuations

Isotropic: \(\beta_n \sim 0.6 \)
\(\alpha: \beta: \gamma \approx 2.2 : 1 : -3.2 \)

Shear: \(\beta_n \sim 0.28 \)
\(\alpha: \beta: \gamma \approx 5.6 : 1 : -6.6 \)
“Passive” vs. “Active” Strain-rate Fluctuations

Passive strain-rate fluctuations

- locally two dimensional: \(s_{ij} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -c \\ 0 & c & 0 \end{bmatrix} \), \(\beta = 0 \)
- perfect alignment: \(\hat{e}_\beta \parallel \vec{\omega} \)
- no production: \(P_{\omega^2} = P_{s^2} = 0 \)

\(\Rightarrow \) passive \(s_{ij} \) are a kinematic consequence of concentrated vorticity
Active and Passive Enstrophy Structures

enstrophy production rate

\[\langle P_{\omega^2} \rangle_{\text{structure}} = 2 \langle \omega_i \omega_j \rangle_{\text{structure}} \]
Active and Passive Enstrophy Structures

Enstrophy Production Rate

\[\langle \mathbf{P} \omega^2 \rangle_{\text{structure}} = 2 \langle \omega_i s_{ij} \omega_j \rangle_{\text{structure}} \]

Alignment with Vorticity

\[\langle \cos \theta_{\beta} \rangle_{\text{structure}} \]

Magnitude of Second Eigenvalue

\[\langle \beta_n \rangle_{\text{structure}} \]

\[\langle \mathbf{P} \omega^2 \rangle_{\text{structure}} \text{ structure number} \]
Creation of Horseshoe Vortices by Shear

process: identify same ω^2 structure backwards/forwards in time from shear state
The Creation Process

$St = 0$

$St = 0.2$

$St = 0.4$

$St = 0.6$

$St = 0.8$

$St = 1.0$

$St = 1.2$

$St = 1.4$

$St = 1.6$

$St = 1.8$

$St = 2.0$

$St = 2.2$
The Initial Transitional Period

$St = 0$

$St = 0.2$

$St = 0.4$

$St = 0.6$

$St = 0.8$

$St = 1.0$

$St = 1.2$

$St = 1.4$

$St = 1.6$

$St = 1.8$

$St = 2.0$

$St = 2.2$
Shear Layer to Vortex Tube

$St = 0$

$St = 0.2$

$St = 0.6$

ω^2 structure

s^2 isosurface
The Initial Creation Process

$St = 0$

$St = 0.2$

$St = 0.4$

$St = 0.6$

$St = 0.8$

$St = 1.0$

$St = 1.2$

$St = 1.4$

$St = 1.6$

$St = 1.8$

$St = 2.0$

$St = 2.2$
Later Evolution of Horseshoe Vortex

$St = 1.8$

$St = 2.0$

$St = 2.2$

$St = 2.4$

$St = 2.6$

$St = 2.8$

$St = 3.0$

$St = 3.2$

$St = 3.4$
Quantifying Horseshoe Vortex Evolution

\[\text{corr}(\omega^2, s^2) \]

\[\cos \theta_\beta \]
Summary

Structures
• concentrations of different fluctuating turbulence variables as coherent structures
 ⇒ concurrent quantification with visualization: evolution

Shear
• aligns and squashes vortex tubes
• two-dimensionalizes s_{ij}
• enhances passive s_{ij}
• enhancement is within the more intense enstrophy structures

Structures
• most enstrophy production is in the second s_{ij} eigenvalue associated with the more intense enstrophy structures
 ⇒ both passive and active s_{ij} are enhanced by shear