Collisions of Black Holes & Neutron Stars

Pablo Laguna
Department of Astronomy & Astrophysics
Department of Physics
Institute for Gravitational Physics and Geometry
Center for Gravitational Wave Physics
Penn State University, USA
Black Holes

Fiction? Reality?
Supermassive Black Holes

Quasars & Active Galaxies

\[M \geq 10^6 M_\odot \]
Tidal Disruptions of Stars by Supermassive Black Holes
Solar Mass Black Holes

Credit: NASA/ESA
Neutron Stars & Pulsars

Crab Nebula
Gravitational Waves

- They interact very weakly with matter
- We will be able to see directly the source
- A new window in Astronomy will be opened
Gravitational Waves: ripples in the fabric of space-time
Interferometers

\[L = 5 \text{ km} \]

\[\Delta L \approx \frac{\text{proton radius}}{10,000} \]

\[h = \frac{\Delta L}{L} \approx 10^{-23} \quad \text{Wave Amplitude} \]
Earth-based Interferometers
The Ultimate Test of General Relativity: Binary Black Hole and/or Neutron Star Collisions

Numerical Relativity: Numerical solutions to Einstein’s equations

\[G_{\mu\nu} = 8\pi T_{\mu\nu} \]
First Grand Challenge

The Grand Challenge Equations

\[B_i A_i = E_i A_i + \rho_i \sum_j B_j A_j F_{ji} \]

\[\nabla \times \vec{B} = -\frac{\partial \vec{B}}{\partial t} \]

\[\vec{F} = m \vec{a} + \frac{dm}{dt} \vec{v} \]

\[dU = \left(\frac{\partial U}{\partial S} \right)_V dS + \left(\frac{\partial U}{\partial V} \right)_S dV \]

\[\nabla \cdot \vec{D} = \rho \]

\[Z = \sum_j g_j e^{-E_j/kT} \]

\[F_j = \sum_{k=0}^{N-1} F_{kj} e^{2\pi i j k / N} \]

\[\nabla^2 u = \frac{\partial u}{\partial t} \]

\[\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J} \]

\[\nabla \cdot \vec{B} = 0 \]

\[p_{n+1} = r p_n (1 - p_n) \]

\[-\frac{h^2}{8\pi^2 m} \nabla^2 \Psi(r,t) + \nabla \Psi(r,t) = -\frac{h}{2\pi i} \frac{\partial \Psi(r,t)}{\partial t} \]

\[-\nabla^2 u + \lambda u = f \]

\[\frac{\partial u}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} = -\frac{1}{\rho} \nabla p + \gamma \nabla^2 \vec{u} + \frac{1}{\rho} \vec{F} \]

\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f \]

- Newton's Equations
- Schrödinger Equation (Time Dependent)
- Navier-Stokes Equation
- Poisson Equation
- Heat Equation
- Helmholtz Equation
- Discrete Fourier Transform
- Maxwell's Equations
- Partition Function
- Population Dynamics
- Combined 1st and 2nd Laws of Thermodynamics
- Radiosity
- Rational B-Spline
Einstein Equations & Geometrodynamics

\[G_{\mu\nu} = 8\pi T_{\mu\nu} \]

Space-Time Geometry = Matter-Energy

John A. Wheeler

Geometrodynamics: Time history of the Geometry of Space
Formulations of the Einstein Equations

\[G_{\mu\nu} = 8\pi T_{\mu\nu} \quad \text{and} \quad G_{\mu\nu} = F[\partial^2 g_{\alpha\beta}, (\partial g_{\alpha\beta})^2, \ldots] \]

Analogy:

\[-\partial_{tt}\Phi + \partial_{xx}\Phi + \frac{1}{\Phi} (\partial_t\Phi)^2 = 8\pi \rho \]

One possibility:

\[\partial_t\Phi = K \]

\[\partial_tK = \partial_{xx}\Phi - \frac{K^2}{\Phi} - 8\pi \rho \]

Another possibility:

\[\partial_t\Phi = -K \]

\[\partial_tK + \partial_x M = -\frac{K^2}{\Phi} - 8\pi \rho \]

\[\partial_tM + \partial_x K = 0 \]
Instabilities!

Constraint violating modes?
What?

\[
\begin{align*}
\partial_t \vec{A} & = -\vec{E} - \nabla \Phi \\
\partial_t \vec{E} & = -\nabla^2 \vec{A} + \nabla (\nabla \cdot \vec{A})
\end{align*}
\]

Evolution equations

\[\nabla \cdot \vec{E} \equiv C = 0\]

Constraint

At analytic the level:

\[C(t = 0) = 0 \quad \Rightarrow \quad C(t) = 0\]

Not the case at the discrete level!
Second Grand Challenge

GIGO = Garbage In, Garbage Out
Initial Data Problem

Goal: Construct astrophysically relevant data satisfying the Einstein Constraints
E&M Analogy

\[
\begin{align*}
\partial_t \vec{A} &= -\vec{E} - \nabla \Phi & \text{Evolution equations} \\
\partial_t \vec{E} &= -\nabla^2 \vec{A} + \nabla (\nabla \cdot \vec{A}) \\
\nabla \cdot \vec{E} &= 0 & \text{Constraint}
\end{align*}
\]

Initial Data: \((\vec{E}, \vec{A})\) 6 quantities but only 1 equation!

Clearly \(\vec{A}\) is freely specifiable.

But, which of the 3 components of \(\vec{E}\) is fixed by \(\nabla \cdot \vec{E} = 0\)

\[
\vec{E} = \vec{T} + \nabla \phi \\
\nabla \cdot \vec{E} = 0 \quad \iff \quad \nabla^2 \phi = 0
\]

Transverse + Longitudinal
Third Grand Challenge

The Black Hole Singularity: When Nature Divided by Zero
Another Analogy

Subsonic

Supersonic
Black Hole Excision

Excision
Unruh (1984)
Not that easy!

\[
\frac{\partial \phi}{\partial x}_{i,j} = \frac{\phi(x_{i+1}, y_j) - \phi(x_{i-1}, y_j)}{\Delta x}
\]

\[
\frac{\partial \phi}{\partial y}_{i,j} = \frac{\phi(x_i, y_{j+1}) - \phi(x_i, y_{j-1})}{\Delta y}
\]
Finite-Differences at the Excision Boundary
High Performance Computing

Scales:

• Characteristic scale M (BH mass)
• Minimum resolution ~ M/20
• Radiation wavelength ~ 15 M
• Computational domain ~ 500 M
• Evolution time ~ 500 M
• Floating point operations per grid-point ~ 10^5
PSU Numerical Relativity Gang

Deirdre Shoemaker (F)
Pablo Laguna (F)
Frank Herrmann (P)
Ian Hinder (P)
Carlos Sopuerta (P)
Adrew Knapp (GS)
Eloisa Bentivegna (GS)
Tanja Bode (GS)
Birjoo Vaishnav (GS)
Edward Cazales (UG)
Padraic Finnerty (UG)
Rachel Peet (UG)
Leah Liu (UG)
James Dalessio (UG)
Single Black Holes
Head-on BH Collisions
BH Orbits and Merger

Lapse α at $T=0.0M$
Black Hole - Neutron Stars
The Maya Code

- PDEs
- Kranc
- Cactus
- Maya
- Carpet

Einstein Equations
Mathematica scripts to generate the source
Parallelization, IO, Time Updates, Grid-functions, Parameters
www.cactuscode.org
Tools
Adaptive mesh refinements infrastructure
Horizon trackers, wave extraction, etc.
Conclusions & Future

- Black Hole - Neutron Star Binaries are one of the most important sources of gravitational radiation.

- Gravitational waves will be detected within 10 years.

- A new window will be opened: Gravitational Wave Astronomy.

- Numerical simulations will play a crucial role in the detection and characterization of source of gravitational waves.