“But what we found is that if you take other molecules and blend those in, you can decrease the refractive index of the entire film without adversely affecting the properties of the original molecules,” said Giebink. “We blend in spectators that will change the optical properties but not the electrical properties.”
If Giebink and his fellow researchers can blend these molecules effectively, they will work with OLEDWorks to see if they can scale up the work to be manufactured.
Should the researchers reach the point of commercialization, it would not be their first successful experience with seeing their research incorporated into a commercial product.
“We had another similar program before, focused on white OLED panels where we also worked with the same arm of the DOE and with OLEDWorks,” Giebink said. “That was focusing on a very different question of the long-term reliability of these panels. Sometimes they’d fail catastrophically halfway through their life, and we wanted to figure out why that was happening and how to prevent it from happening. Turns out we were successful in figuring out the problem and coming up with a solution that OLEDWorks is now using in their products.”
With this newer OLED research, Giebink and his colleagues are optimistic about the chances of repeating their success. If they do, the environmental implications of their work on a commercial-scale are significant.
“The efficiency of organic LEDs commercially right now is something like 70 to 80 lumens per watt. For comparison, your standard incandescent lightbulb is a little bit less than 20. So, we’re talking about four times the efficiency,” Giebink said. “That’s a big opportunity for energy savings that complements what inorganic LEDs are able to provide.”
Giebink credits the resources and people at Penn State as instrumental in both receiving the grant and conducting the research.
“Being at Penn State is really useful from a materials standpoint because we have a fantastic materials characterization facility. There was never a question about whether or not we could do this research because we have every tool we could possibly want here,” Giebink said. “Also, the people we have here are great. When I realized what we needed in terms of someone to design the molecules in order to make this idea work, it was just a matter of walking across one building in order to find Mike who said, ‘Yeah, we can do that.’ It’s a collection of facilities and people that I think is really the enabling factor.”