UNIVERSITY PARK, Pa. — Fruit flies can quickly compensate for catastrophic wing injuries, researchers found, maintaining the same stability after losing up to 40% of a wing. This finding could inform the design of versatile robots, which face the similar challenge of having to quickly adapt to mishaps in the field.
The Penn State-led team published their results today (Nov. 18) in Science Advances.
To run the experiment, researchers altered the wing length of anesthetized fruit flies, imitating an injury flying insects can sustain. They then suspended the flies in a virtual reality ring. Mimicking what flies would see when in flight, researchers played virtual imagery on tiny screens in the ring, causing the flies to move as if flying.
“We found flies compensate for their injuries by flapping the damaged wing harder and reducing the speed of the healthy one,” said corresponding author Jean-Michel Mongeau, Penn State assistant professor of mechanical engineering. “They accomplish this by modulating signals in their nervous system, allowing them to fine-tune their flight even after an injury.”
By flapping their damaged wing harder, fruit flies exchange some performance — which lowers only slightly — to maintain stability by actively increasing damping.
“If you drive on a paved road, friction is maintained between the tires and the surface, and the car is stable,” Mongeau said, comparing damping to friction. “But on an icy road, there is decreased friction between the road and tires, causing instability. In this case, a fruit fly, as the driver, actively increases damping with its nervous system in an attempt to increase stability.”
Co-author Bo Cheng, Penn State Kenneth K. and Olivia J. Kuo Early Career Associate Professor of Mechanical Engineering, noted that stability is more important than power for flight performance.
“Under wing damage, both performance and stability would typically suffer; however, flies use an ‘internal knob’ that increases damping to maintain the desired stability, even if that leads to further decreases in performance,” Cheng said. “In fact, it has been shown that it is indeed the stability, instead of the required power, that limits maneuverability in flies."