UNIVERSITY PARK, Pa. — An international collaboration led by Penn State researchers has developed a new tool to reduce the time and resources involved in determining which materials can be best applied in wearable technology, including biomedical devices.
The tool, reported in ACS Central Science, uses the chemical structure of a class of plastics called conjugated polymers to predict their physical properties, like stiffness or pliability. Conjugated polymers, or chains of molecules arranged on a backbone of alternating chemical bonds, have similar electrical properties as the metal and silicon used in many current wearable electronics, but are more flexible and could make for more comfortable or integrated technology, according to the researchers.
“Mechanical characteristics are important when it comes to conjugated polymers,” said Abigail Fenton, first author on the paper and Penn State doctoral student in chemical engineering. “Computer programs in materials research can be complex, and what we have made is simpler: we just plug the numbers in an equation and get information back, which tells us how brittle or flexible a material would be if we did it experimentally.”