UNIVERSITY PARK, Pa. — Moore's Law, a fundamental scaling principle for electronic devices, forecasts that the number of transistors on a chip will double every two years, ensuring more computing power — but a limit exists.
Today's most advanced chips house nearly 50 billion transistors within a space no larger than your thumbnail. The task of cramming even more transistors into that confined area has become more and more difficult, according to Penn State researchers.
In a study published today (Jan. 10) in the journal Nature, Saptarshi Das, an associate professor of engineering science and mechanics and co-corresponding author of the study, and his team suggest a remedy: seamlessly implementing 3D integration with 2D materials.
In the semiconductor world, 3D integration means vertically stacking multiple layers of semiconductor devices. This approach not only facilitates the packing of more silicon-based transistors onto a computer chip, commonly referred to as “More Moore,” but also permits the use of transistors made from 2D materials to incorporate diverse functionalities within various layers of the stack, a concept known as “More than Moore.”
With the work outlined in the study, Saptarshi and the team demonstrate feasible paths beyond scaling current tech to achieve both More Moore and More than Moore through monolithic 3D integration. Monolithic 3D integration is a fabrication process wherein researchers directly make the devices on the one below, as compared to the traditional process of stacking independently fabricated layers.
“Monolithic 3D integration offers the highest density of vertical connections as it does not rely on bonding of two pre-patterned chips — which would require microbumps where two chips are bonded together — so you have more space to make connections,” said Najam Sakib, graduate research assistant in engineering science and mechanics and co-author of the study.
Monolithic 3D integration faces significant challenges, though, according to Darsith Jayachandran, graduate research assistant in engineering science and mechanics and co-corresponding author of the study, since conventional silicon components would melt under the processing temperatures.
“One challenge is the process temperature ceiling of 450 degrees Celsius (C) for back-end integration for silicon-based chips — our monolithic 3D integration approach drops that temperate significantly to less than 200 C,” Jayachandran said, explaining that the process temperature ceiling is the maximum temperature allowed before damaging the prefabricated structures. “Incompatible process temperature budgets make monolithic 3D integration challenging with silicon chips, but 2D materials can withstand temperatures needed for the process.”
The researchers used existing techniques for their approach, but they are the first to successfully achieve monolithic 3D integration at this scale using 2D transistors made with 2D semiconductors called transition metal dichalcogenides.