A domino effect of sea-ice melting on terrestrial animals, Post explained, could happen through a disruption in the food chain. Sea-ice algae and sub-ice plankton, which together account for 57 percent of the total annual biological production in the Arctic Ocean, already are being immediately affected by sea-ice melting because ice loss triggers a significant change in the blooming times of these organisms. Likewise, land adjacent to areas of sea-ice loss will experience significant surface warming inland from the coastline, affecting soil conditions and plant growth. Post and his colleagues hypothesize that, while invertebrate ocean-dwelling animals -- such as zooplankton that feed on algae and phytoplankton in the seas -- already are being affected, larger terrestrial animals such as caribou could find their land-dwelling food sources disrupted, as well, due to temperature changes affecting plant communities inland.
"A change in population mixing could be another, indirect effect of sea-ice melting," Post said. He explained that populations of wolves and arctic foxes that currently are isolated only during the summer could become even more isolated. A longer period of the year without ice, which promotes travel between populations, could lead to a decline in crossbreeding.
However, for other species, the effect of sea-ice loss could be just the opposite: "We know that, for some species, sea ice acts as a barrier to intermixing," Post explained. "So for these species, ice loss and a lengthening of the ice-free season likely will increase population mixing, reducing genetic differentiation." Post explained that, for example, polar and grizzly bears already have been observed to have hybridized because polar bears now are spending more time on land, where they have contact with grizzlies.
While such mixing of populations is not necessarily cause for concern, Post explained, it could lead to drastic changes in disease dynamics. For example, a population that currently is a host to a certain pathogen could carry that pathogen to another, previously unexposed population. "In addition, a decrease in sea ice in arctic Canada likely will increase contact between eastern and western arctic species, promoting mixing of pathogen communities that previously were isolated," Post said. "For example, phocine distemper virus (PDV) currently affects eastern Arctic seals. But if these seals begin to mix with western arctic seals, the virus may reach other, naive populations."
Post added that greater accessibility of previously remote parts of the Arctic to human exploration could be yet another unexpected consequence of sea-ice loss. "Retreating sea ice, longer ice-free seasons, and loss of sea ice are expected to promote development of shipping lanes and increased shipping traffic in areas that formerly were rather inaccessible," Post said. "This increased marine access likely will accelerate the pace of mineral and petroleum exploration in the Arctic, which in turn could affect both terrestrial and marine animals; for example, bowhead whales and Pacific walrus."
More information and photos are available at:http://science.psu.edu/news-and-events/2013-news/Post7-2013