The discovery and characterization of the exoplanet was enabled by three instruments built at Penn State: the NASA-funded NEID spectrograph, the Habitable Zone Planet Finder spectrograph and a photometric diffuser. All three instruments allow researchers to observe and analyze light emitted by the exoplanet.
The researchers first detected the planet using NASA’s Transiting Exoplanet Survey Satellite (TESS) in January 2020, which revealed a dip in a star’s brightness consistent with a single Jupiter-sized planet passing in front of the star. To confirm the nature of these fluctuations and eliminate other possible causes, a team of astronomers used two instruments on the WIYN 3.5-meter Telescope at the U.S. National Science Foundation (NSF) Kitt Peak National Observatory (KPNO), a program of NSF NOIRLab.
The team first utilized the NASA-funded NN-EXPLORE Exoplanet and Stellar Speckle Imager (NESSI) in a technique that helps to “freeze out” atmospheric twinkling, which showed that there were no extraneous stars nearby that could have confused the TESS measurements. Then, using the HPF and NEID spectrographs, the team observed how TIC 241249530’s spectrum, or wavelengths of its emitted light, shifted as a result of the exoplanet orbiting it.
“It's so exciting to see such great science coming out of NEID within just a few years of operations,” said Andrea Lin, a co-author on the paper and doctoral student at Penn State who helped construct and commission the NEID spectrograph. “We’re just getting started and I'm looking forward to seeing what we can accomplish in the future.”
Detailed analysis of how the velocity of the star changes throughout the planet’s six-month orbital period confirmed that the exoplanet is approximately five times more massive than Jupiter, and that it is orbiting along an extremely eccentric path.
“This is the most eccentric transiting planet known and will prove to be as important as the previous record holder, HD80606b, which likewise has a wacky orbit highly misaligned with its host star's spin,” said Jason Wright, Penn State professor of astronomy and astrophysics, who supervised the project while Gupta was a doctoral student at the university. “These two highly eccentric planets have been ‘caught in the act’ of evolving towards hot Jupiter status. Like HD80606b, this planet is many times Jupiter's mass, suggesting this channel for forming hot Jupiters might be one only the most massive planets can take.”
Together, these two examples observationally affirm the idea that higher-mass gas giants evolve to become hot Jupiters as they migrate from highly eccentric orbits toward tighter, more circular orbits.
"We’re especially interested in what we can learn about the dynamics of this planet's atmosphere after it makes one of its scorchingly close passages to its star," Wright said. "Telescopes like NASA's James Webb Space Telescope have the sensitivity to probe the changes in the atmosphere of this newly discovered exoplanet as it undergoes rapid heating, so there is still much more for the team to learn about the exoplanet."
Other Penn State co-authors are Jessica Libby-Roberts, a postdoctoral fellow, Megan Delamer, a graduate student, and Donald Schneider, distinguished professor of astronomy and astrophysics. A full list of authors is available on the paper.
This work was funded by Penn State, the National Aeronautics and Space Administration (NASA), The Center for Exoplanets and Habitable Worlds, NASA-NSF Exoplanet Observational Research (NN-EXPLORE), NASA Exoplanet Exploration Program, The NASA Ames Research Center, The Robert Martin Ayers Sciences Fund, The U.S. National Science Foundation (NSF), The Agencia Estatal de Investigación of the Ministerio de Ciencia e Innovación, the Nicolaus Copernicus University in Toruń, Polan, The Spanish Ministry of Science and Innovation (MICINN) through the Spanish State Research Agency, The TESS Guest Investigator Program, The Heising-Simons Foundation, the University of Texas at Austin, Ludwig-Maximillians-Universitaet Muenchen and Georg-August Universitaet Goettingen.
Editor’s note: This story was adapted from a NOIRLab news release.