For the first time, scientists have observed ripples in the fabric of spacetime, called gravitational waves, arriving at Earth from a cataclysmic event in the distant universe. This observation confirms a major prediction of Albert Einstein’s general theory of relativity, published in 1916, and opens an unprecedented new window onto the cosmos.
Gravitational waves carry information about their dramatic origins and about the nature of gravity that cannot otherwise be obtained. Physicists have concluded that the detected gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.
The gravitational waves were detected on September 14, 2015 at 5:51 a.m. Eastern Daylight Time (9:51 a.m. UTC) by both of the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA. The LIGO Observatories are funded by the National Science Foundation (NSF), and were conceived, built, and are operated by Caltech and MIT. The discovery, accepted for publication in the journal Physical Review Letters, was made by the LIGO Scientific Collaboration (which includes the GEO Collaboration and the Australian Consortium for Interferometric Gravitational Astronomy) and the Virgo Collaboration using data from the two LIGO detectors.
"This first direct detection of gravitational waves is a breathtaking discovery that will stand out among the major achievements of the 21st-century science because it opens the door to many discoveries that I believe will be made in the coming decade," said Abhay Ashtekar, Director of the Institute for Gravitation and the Cosmos at Penn State University and Holder of the Eberly Family Chair in Physics at the University. "This first detection by LIGO originated in a collision of two black holes orbiting each other, which we call binary pairs. It has already resolved the long debated issue of the existence of binary pairs with masses tens of times greater than that of our Sun," Ashtekar said.