UNIVERSITY PARK, Pa. — Under the right conditions, ordinary clear water droplets on a transparent surface can produce brilliant colors, without the addition of inks or dyes. This iridescent effect is due to “structural color,” by which an object generates color simply by the way light interacts with its geometric structure.
In a paper appearing Feb. 28 in the journal Nature, a team of researchers at Penn State and MIT describe how a surface covered in a fine mist of transparent droplets and lit with a single white light lamp can produce bright, iridescent colors if each tiny droplet is precisely the same size. This newly explained form of structural color could aid in the development of brilliantly-colored cosmetics, color-changing paints, or adaptive camouflage.
“The typical way you get color is with dyes or pigments, which have molecules that selectively absorb and scatter specific wavelengths of light,” said Lauren Zarzar, assistant professor of chemistry at Penn State and a leader of the research team. “Structural color is different. It’s a product of light interacting with a material in a way that causes light interference. Structural color is often iridescent and the color we see depends on the angle we are looking from and the angle of the light. We see it in things like opals, butterfly wings, beetles and bird feathers.”
The team first noticed the phenomenon while studying transparent droplet emulsions made from a mixture of oils of different density and water-based surfactants — compounds that reduce surface tension in liquids and are used in soaps and detergents. They were observing the droplets’ interactions in a clear Petri dish, when they noticed the drops appeared surprisingly colorful, and the colors changed with viewing direction. Subsequently, the team was able to produce the same color effect by simply allowing water droplets to condense on the lid of a Petri dish filled with warm water.
“We didn’t set out to discover this,” said Amy Goodling, a graduate student in materials science and engineering at Penn State and co-first author of the paper. “We have been working with these droplets for a while because the combination of oils and surfactants create droplets with a particular internal structure. It wasn’t until we started making droplets that were uniform in size that the color became noticeable.”
Where does the color come from? Initially, the researchers thought the color might be caused by the same phenomenon that produces rainbows. Rainbows form when sunlight enters a spherical raindrop and is bent, or refracted, off the back of the raindrop, before reflecting back out at a different angle.