In a paper published in Science Advances, the researchers have demonstrated just how far upstream bacteria can travel despite what appears to be erratic movement. The team designed an experiment with E. coli bacteria swimming against fluid flow in microfluidic channels, which they filmed. They examined to what extent the confinement was important in the macroscopic transport of the bacteria.
“Our measurements suggest that upstream-swimming bacteria can overcome distances comparable to the sizes of human organs, tens of millimeters in some tens of minutes under conditions of high confinement,” said Nuris Figueroa-Morales, Penn State bioengineering postdoctoral researcher and lead author of the publication. “In the human urinary tract, for example, ureters are tubes with muscular walls that undergo successive waves of active muscular contraction to move liquid from the kidney to the bladder. When totally contracted, they collapse to a slit-shaped, very confined cross section, possibly favorable to upstream bacterial migration.”
The flow’s confinement is an essential ingredient for upstream contamination. Bacteria move forward in upstream paths but are interrupted by downstream transport, when they are carried by fast flows near the center of the channel. The wider the channel, the further bacteria are transported back before restarting their motion upstream close to walls. In a narrow channel, the bacteria move much quicker and more consistently upstream — an effect the researchers named “super-contamination.” Their findings could explain why some infections rapidly become life-threatening medical emergencies.