UNIVERSITY PARK, Pa. — Malaria parasites survive the mosquito-free dry season by waiting silently in humans for the return of the rainy season that brings back with it mosquitoes. New research, by an international team including Penn State scientists, helps explain how the Plasmodium falciparum parasite survives the disruption to its lifecycle, which requires development within the mosquito host for transmission between people. A paper describing the research appears Oct. 26 in the journal Nature Medicine.
“One of the great mysteries in studying malaria,” said Manuel Llinás, professor of biochemistry and molecular biology and of chemistry at Penn State and an author of the paper, “is understanding how malaria parasites survive throughout the dry season which lacks mosquitoes for transmission between people.”
Malaria parasites, which affect hundreds of millions of people worldwide and kill nearly 300,000 children in Africa each year, spread among humans through the bites of infected mosquitoes. However, in many areas of the globe where malaria is endemic, an extreme dry season eliminates all of the mosquito breeding sites such that the mosquitoes disappear and malaria transmission is interrupted for several months every year. In these areas, asymptomatic people infected with the parasite can be found year-round, but symptomatic malaria cases rise sharply when mosquitoes are present before disappearing again during the dry season. Cases resume in the ensuing wet season when mosquitoes return and the cycle begins again.
The research team was led by Silvia Portugal at the Heidelberg University Hospital. Members of her lab visited Mali, working with Boubacar Traoré’s group at the University of Sciences, Techniques and Technologies of Bamako in Mali to follow almost 600 Malians ranging in age from three months to 45 years of age over several cycles of annual dry and wet seasons. By comparing blood samples from people carrying malaria parasites to non-infected people they determined that dry season parasites were not triggering host immunity.
According to the researchers, malaria parasites persist inside humans during the dry months at low levels that do not risk the host’s health, guaranteeing their survival until the next wet season when parasite transmission can resume. One hallmark characteristic of the malaria parasite is that it can seemingly disappear from blood circulation by adhering to the wall of the blood vessels as the parasite grows inside the red blood cell. This adhesion to the blood vessel helps the parasite avoid clearance when red blood cells are routinely passed through the spleen, which clears old, damaged, or infected red blood cells.