UNIVERSITY PARK, Pa. — Employing advanced genetic-tracing techniques and sharing the data produced in real time could limit the spread of bacteria — Bacillus cereus — which cause foodborne illness, according to researchers who implemented whole-genome sequencing of a pathogen-outbreak investigation.
"Here, in our study, we use this approach for the first time on Bacillus cereus," said Jasna Kovac, assistant professor of food science, Penn State, College of Agricultural Sciences. "It is our hope that whole-genome sequencing of Bacillus will be done more often as a result of our research, as it allows us to differentiate between the various species of Bacillus cereus group and project the food-safety risk associated with them."
Done in response to an outbreak of foodborne illness in upstate New York in 2016, the project marked the first time researchers conducted whole-genome sequencing to investigate a Bacillus cereus outbreak to link isolates from human clinical cases to food. The outbreak, which lasted less than a month, stemmed from contaminated refried beans served by a small Mexican restaurant chain.
Although the toxin-producing bacteria are estimated to cause 63,400 foodborne disease cases per year in the United States, Bacillus cereus does not receive the attention given to more deadly foodborne pathogens such as Listeria and Salmonella.