Once spread across campus, many CIDD-affiliated faculty members are now co-housed in the Millennium Science Complex, and the interactions forged out of proximity have produced new research projects that span departmental and college lines.
“There’s this mix of fundamental research and applied research, and then there’s a mix of approaches, from the molecular, to the whole organism, to the population, to the community level,” said Katriona Shea, Alumni Professor of Biology and a CIDD-affiliated faculty member. “People are working in all of these different ways, and every time we interact via seminars or the social interactions that go on in CIDD, other new and exciting ideas emerge.”
Shea has been conducting research on the use of adaptive management for disease control, which is a process for dealing with unknowns when faced with a new problem, and ascertaining what information is most crucial to finding a solution. Like Shea herself, adaptive management has its roots in wildlife management, but she soon saw its place in disease management as well — and has since applied it to research involving foot-and-mouth disease in livestock and Ebola in humans.
“So it’s kind of learning while doing, rather than just learning before or after an outbreak,” Shea said. “It’s been used in wildlife and conservation efforts, which was my background, and I realized it wasn’t really being used with diseases. So I went to Matt Ferrari and Ottar Bjornstad, both members of CIDD, and pitched to them that there were ways that adaptive management could really streamline disease management and potentially save lives.”
Tackling global problems
Since its founding in late 2003 by faculty members Bjornstad, Pete Hudson, Eric Harvill, Darla Lindberg and others, CIDD has quickly gained a global reputation for its ecological, rather than clinical, approach to the study of infectious diseases, which focuses on disease transmission at a population level over time.
“The ecology of transmission is heavily involved in what we do,” Read said. “In clinical microbiology, for example, they’re interested in what the agent is that’s making a person sick and how to kill it. We’re interested in that, too, but we’re also interested in how that agent gets from person to person. How does the resistance to a drug spread through a population? Can we use any of those population-level processes to reduce transmission, to reduce sickness?”
The work being performed by CIDD faculty members and researchers is as broad as it is critical. There are CIDD faculty members working to stop malaria transmission in villages in Africa, as well as developing new drugs and vaccines against malaria. Of particular note is the work being done by a team of researchers led by Matt Thomas, professor of entomology, which recently was awarded a $10.2 million grant from the Bill and Melinda Gates Foundation to develop novel approaches to block malaria transmission by controlling mosquitos’ access to homes in Africa.