UNIVERSITY PARK, Pa. — ZIF glasses, a new family of glass, could combine the transparency of silicate glass with the nonbrittle quality of metallic glass, according to researchers at Penn State and Cambridge University in the U.K.
"We are sure of the transparency," said John Mauro, professor of materials science and engineering at Penn State. "We'll have to wait until larger samples can be made to know if it has the amazing ductility of metallic glass, but it looks promising."
The newest class of glass-forming materials, zeolitic imidazolate frameworks (ZIF), has a structure in which metal ions are linked by organic ligands. When heated within a limited range of high temperatures, some ZIF materials will melt and reform into a glassy structure in which the atoms have a disordered structure. Beyond the potential of a transparent and far more bendable glass, some ZIFs contain large numbers of functional pores that can be used for gas storage — metal-organic frameworks have been proposed as cages for hydrogen storage for fuel cell vehicles, catalysis, gas separation or even drug delivery.
"ZIFs are so new that people are just discovering which chemistries form glasses," Mauro said. "The goal of our group is to accelerate the design of these new glasses through modeling."
In two recent journal articles, Mauro and colleagues used different modeling methods to deepen understanding and predict the properties of ZIF glasses. The first modeling method, ReaxFF, was developed by Adri van Duin, professor of mechanical engineering at Penn State, who is co-author of both papers. ReaxFF is a computationally fast and economical method for simulating the melting and reforming of candidate materials.