At the Penn State Harrisburg lab, they test the nitrogen and phosphorus in the water. The undergraduate students also do lab work at University Park, where they test for different types of metals, nitrogen and phosphorus in the soil.
“Since we don’t have the ability to look at numerous heavy metals here at the college, we took advantage of the REU collaboration,” Sliko said. “It was a good opportunity for the students to be exposed to resources on campus and at University Park and there is potential for future collaborations, as well.”
The consensus of the group is that the there is value in broad restorations that reconnect the stream to its floodplain — the area of land adjacent to a stream or river. The more you create a natural connection of the stream to the land, the better the stream performs, according to Sliko.
“These broad restorations are the most effective,” Sliko said. “However, you must also look at the land-use policies in the watershed and the external factors, such as whether you have a sewage plant dumping into a stream or a farmer discharging nutrient-rich water. The policies that regulate what gets dumped into the streams could play a more important role than the stream restorations themselves.”
Sliko added that broad restorations are also beneficial because they provide a storage place for flood water.
“The more you pave, put down buildings or streets or parking lots, water cannot soak into the ground. It flows over ground, dumps into a stream and creates more flooding,” she said. “Broad restorations, while more expensive, are more effective in reducing flooding.”
A community effort
One of the streams the group tested is located at the Masonic Village retirement community a few miles from campus in Elizabethtown, Pennsylvania. In 2008, in conjunction with several local organizations, the village completed a broad riparian restoration of a portion of the Conoy Creek located along its property. The project removed centuries of nutrient-laden sediments and restored 3,200 feet of the creek’s floodplain, including the reconstruction of the wetland environment that existed between 300 and 5,000 years ago.
Clark, who is collaborating with Sliko on the research project, explained, “A long time ago, this area didn’t flood that much because we weren’t building so close to the creek. The residents are thrilled with the restoration because it allows nature to slow down the water, let’s some of it soak into the soil, replenish the ground water, and even, with this wide bank of trees and bushes, it takes a lot more energy to push water through, so it slows the water down and the flood wave gets lower and lower until eventually it is back in the banks.”