Restoring balance to the global carbon cycle
Song’s primary goal in his research — and the dream that has fueled more than a decade of his carbon dioxide conversion studies — is to develop a sustainable energy cycle for the future. Part of this involves addressing what he sees as an imbalance in the world’s natural global carbon cycle.
“Normally, carbon dioxide in the air is absorbed by growing plants through photosynthesis, and plants either are eaten by animals or they die. Matter from decomposing animals and plants is used by microbes for respiration, and this process releases carbon back into the atmosphere, which continues the cycle,” says Song, who is a distinguished professor of fuel science.
However, the rapid consumption of fossil fuels, which releases carbon dioxide, has offset that balance, he says.
“Most of the coal, petroleum, natural gas and other fossil fuels we use today for power originated between 280 and 300 million years ago,” Song says. “They are burned in a matter of minutes, which means we’re using them up millions of times faster than they were formed. There’s no way you can be sustainable in this fashion.”
Song believes the global carbon cycle balance can be restored by changing how we view carbon dioxide. Instead of looking at it as a pollutant or a waste product, Song sees carbon dioxide as a valuable ingredient for creating fuels, industrial chemicals and other materials.
Cooking up useful products
The goal of carbon conversion is to break apart carbon dioxide into its parts — carbon and oxygen molecules — and then use those parts as building blocks for different materials. Song's approach requires three main ingredients: carbon dioxide, a chemical catalyst and hydrogen, which can be created when water molecules are chemically separated using renewable energy, such as through the chemical process of electrolysis.
Catalysts are chemicals that influence how carbon and hydrogen molecules fit together, and they play a critical role in what products can be created through carbon conversion. They modify the surface properties, such as surface electron density, of the molecules, which allows the molecules to fit together in new and different ways. For example, it could allow for more carbon or hydrogen atoms to be added to the desired molecule, or it could change the types of bonds between carbon and hydrogen atoms. It’s similar to modifying the shape of a puzzle piece so that it can connect to a new puzzle. Every change made at the atomic level affects the end product and how that product functions.
To develop new, selective catalysts for carbon dioxide conversion, Song has been working with Xiao Jiang, a postdoctoral scholar in the EMS Energy Institute; Wenjia Wang, Ph.D. student in energy and mineral engineering; Nuttakorn Bore, a visiting Ph.D. student from Chulalongkorn University in Thailand; and collaborating researchers at Dalian University of Technology in China. They have created and tested several new catalysts within the past several years, and have seen promising results.
“We’ve known for many years that you can create hydrocarbons such as propane and ethane using carbon dioxide conversion, but through our work with surface modification and the creation of novel catalysts, we’re showing that it’s possible to selectively produce valuable chemicals and fuels,” says Song.