UNIVERSITY PARK, Pa. — Penn State researchers have received federal funding to test whether a nanotechnology device can be used to trap and concentrate plant viruses, with an eye toward providing early detection that could help protect crops from disease and reduce pesticide use.
An interdisciplinary team led by Cristina Rosa, assistant professor of plant virology in the College of Agricultural Sciences, will conduct the two-year project with support from a $325,000 grant from the U.S. Department of Agriculture's National Institute of Food and Agriculture.
A crop plant may look healthy to a human observer while it actually is infected by a deadly plant virus, the concentration of which in the plant's sap is too low to detect. In such a case, the virus' size — only 1/500th the diameter of a human hair — presents a diagnostic challenge. However, the emerging science of nanotechnology, which allows the manipulation of matter at the atomic scale, offers some solutions.
"Our goal is to adapt a nanotechnology micro-device to concentrate pathogens in plants, insects and other organisms so that modern diagnostic procedures can be employed earlier in an infection, when virus levels otherwise may be too low to detect," Rosa said. "This technology will make these diagnostic tools more effective in catching infections at the early stages when growers can manage them more easily and effectively."
The micro-device — known as the carbon nanotube size-tunable enrichment platform, or CNT-STEP — originally was developed by researchers in the Department of Physics in Penn State's Eberly College of Science and the Department of Bioengineering in the College of Engineering. The box-like filtration device contains input and output ports and a "forest" of carbon nanotubes spaced to selectively trap viruses, while liquids and smaller particles pass through.
Capturing these virus particles concentrates them above the detection threshold so the virus can be characterized using diagnostic tools such as polymerase chain reaction, enzyme-linked immunosorbent assay or next-generation sequencing. Researchers already have found CNT-STEP to be effective in capturing previously identified influenza viruses from known concentrations in dilute samples as well as emerging and unknown viruses from field samples.