UNIVERSITY PARK, Pa. — By temporarily silencing the expression of a critical gene, researchers fooled soybean plants into sensing they were under siege, encountering a wide range of stresses. Then, after selectively cross breeding those plants with the original stock, the progeny "remember" the stress-induced responses to become more vigorous, resilient and productive plants, according to a team of researchers.
This epigenetic reprogramming of soybean plants, the culmination of a decade-long study, was accomplished not by introducing any new genes but by changing how existing genes are expressed. That is important because it portends how crop yields and tolerance for conditions such as drought and extreme heat will be enhanced in the future, according to lead researcher Sally Mackenzie, professor in the departments of Biology and Plant Science at Penn State.
Researchers identified a gene they call MSH1 that exists in all plants, and when they down-regulate or turn off its expression, the plant becomes "convinced" it is encountering multiple stresses, even though it is growing under perfect conditions. The plant senses it is dealing with drought, extreme cold, heat and high light levels, etc., simultaneously, Mackenzie explained, so it amplifies the expression of gene networks to respond to those stimuli.
Her research group discovered the MSH1 gene more than a decade ago while she was a faculty member at the University of Nebraska-Lincoln studying how the genes necessary for energy generation, photosynthesis and respiration communicate and coordinate. At the time, Mackenzie, now an endowed chair in plant genomics for Penn State's Huck Institutes, did not realize how important the gene is for modifying the way a plant expresses its genes.