SCHUYLKILL HAVEN, Pa. — Sarah Princiotta, assistant professor of biology, has been putting algae and cyanobacteria, or blue-green algae, under the microscope since an undergraduate ecology course revealed to her the highly complex and fascinating world of single-celled aquatic organisms.
Fed by warming temperatures and human-produced nitrogen and phosphorous pollution, these overgrowths of algae and blue-green algae are harmful to freshwater ecosystems and deadly to aquatic life through, primarily, the depletion of oxygen. The resulting odorous foam, froth, and oil-like slicks from a bloom can make water unfit even for recreational use.
Additionally, algal blooms created by certain species of blue-green algae or cyanobacteria can potentially produce harmful toxins. These cyanotoxins negatively impact public health and have been associated with domestic animal and wildlife death.
Enter Sarah Princiotta, assistant professor of biology at Penn State Schuylkill, whose current research focuses on the dynamics of trophic, or food chain, relationships of phytoplankton in freshwater microbial communities, along with known environmental stressors — including changes in global climate —to understand how these communities change over time. This research may prove critical to predicting and controlling the proliferation of potentially toxic blooms.
An early interest in science
Princiotta's interest in ecological and biological systems began during her childhood in southern New Jersey. Her love of the outdoors and curiosity about natural systems and organisms was encouraged by her parents and great-grandparents on whose 30-acre ecosystem — including a lake, orchards, cranberry bog, and various gardens — Princiotta passed many summer days.
"My parents encouraged me to explore the outdoors, where I spent a lot of time as a child,” Princiotta recalled. “My mother took my sister and me to the beach almost every afternoon, and I was fascinated by the activity of horseshoe crabs and sand fleas."
Then, while working toward her bachelor’s degree at Temple University, Princiotta participated in the undergraduate research program under the mentorship of her biology professor, Robert Sanders. Studying the ecology of algae found exclusively in Antarctica provided Princiotta her first encounter with mixotrophic organisms. Mixotrophic organisms are both photosynthetic (acquiring energy from the sun) and heterotrophic (using preformed organic compounds as a source of energy or food).
This undergraduate project stirred Princiotta’s scientific interests and proved to be a pivotal beginning for the trajectory her research would follow.
Creating new knowledge
“When that project ended, I stayed on at Temple to complete a Ph.D. thesis on the ecology and physiology of mixotrophic protists,” explained Princiotta. “What was especially exciting about this field of research was that it wasn’t even in the textbooks at this point.”
When Princiotta was ready to explore post-graduate opportunities, finding an institution where she could maintain an active research program while still teaching was critical. She found what she described as the “best of both worlds” at Penn State Schuylkill.
Further, Princiotta said she enjoys the small class sizes and intimate feel of the Schuylkill campus. “As an instructor, I get to know my students on a personal level,” said Princiotta. “They aren’t just a face in the crowd.”
When Princiotta isn’t in the classroom or conducting fieldwork, you can find her out on the trail with her husband and their spaniel, Penny. We caught up with Princiotta recently to talk more about the nature of her research and its potential real-world impact.
Q: Why algae?
Princiotta: Before working on my undergraduate research project, I assumed that all organisms were either photosynthetic or heterotrophic, but the algae that I was working with from Antarctica were mixotrophic and used both forms of nutrition, sometimes simultaneously and sometimes switching back and forth. This strategy could be especially important for algae that must endure the austral winter when there are 24 hours of continuous darkness for several months.
So, discovering this microscopic world was really eye-opening and exciting.