Driving Digital Innovation in AI is a series of stories about how Penn State’s Institute for CyberScience researchers are studying machine learning and AI to make these technologies more useful and effective, as well as investigating the impact of AI on people and society.
You can’t do anything about the weather, but with a little help from artificial intelligence (AI), meteorologists and atmospheric scientists say they may be able to better predict how our weather patterns might change in the future, and that could lead to more informed decisions on infrastructure, smarter allocation of emergency services, and a better understanding of how climate change may affect long-term weather patterns, according to a Penn State researcher.
Melissa Gervais, assistant professor of meteorology and atmospheric science and Institute for CyberScience co-hire, said that she is increasingly incorporating machine learning, which is a branch of AI, as a tool to help her own research studying future changes in weather patterns with climate change. According to Gervais, the sheer amount of data involved in analyzing these weather patterns is making AI a perfect research partner.
Until now, meteorologists would need to painstakingly look at as many weather maps as possible to understand and classify different weather patterns, for example, the locations of high-pressure ridges and low-pressure troughs. Researchers like Gervais are now analyzing a large number of climate model forecasts over a longer period of time. Simply looking at these maps and charts might give the scientists a better way to visualize weather scenarios, but the process not only is time-consuming, it also is becoming impractical, considering the rapid growth of data.
Gervais now uses a type of AI called "self-organizing maps," which might be considered a computerized version of the pattern recognition, similar to how weather forecasters today analyze weather patterns. This technology mimics how the human brain makes decisions but can take the loads of weather data to identify weather patterns. Gervais said this technology can show how weather patterns are fluctuating – or, variability – as well as give better insights into how it might change in the future.
“If it’s going to become more extreme, more variable, that’s important for us to know,” Gervais said. “If it’s going to be wetter with more extreme rainfall in some places and dryer with more droughts in others, that's important for us to know. This kind of work can tell us what is underlying the mean change and help us to understand why these changes are occurring.”