UNIVERSITY PARK, Pa. — "Frustration" plus a pulse of laser light resulted in a stable "supercrystal" created by a team of researchers led by Penn State and Argonne National Laboratory, together with University of California, Berkeley, and two other national laboratories.
This is one of the first examples of a new state of matter with long-term stability transfigured by the energy from a sub-pico-second laser pulse. The team's goal, supported by the Department of Energy, is to discover interesting states of matter with unusual properties that do not exist in equilibrium in nature.
"We are looking for hidden states of matter by taking the matter out of its comfortable state, which we call the ground state," says the Penn State team leader Venkatraman Gopalan, professor of materials science. "We do this by exciting the electrons into a higher state using a photon, and then watching as the material falls back to its normal state. The idea is that in the excited state, or in a state it passes through for the blink of an eye on the way to the ground state, we will find properties that we would desire to have, such as new forms of polar, magnetic and electronic states."
Finding these states is done by a pump-probe technique when a laser fires a photon at the sample for 100 femtoseconds at a wavelength of 400 nanometers — blue light. The pump light excites the electrons into a higher energy state and is quickly followed by a probe light, which is a gentler pulse of light that reads the state of the material. The challenge for the team was to find a way to maintain the intermediate state of matter, because the state may exist for only some tiny fraction of a second and then disappear. However, the researchers discovered that, at room temperature, the supercrystal is stuck in that state essentially forever.
Gopalan compares this challenge to sending a ball rolling down a mountain side. It will not come to rest until it reaches the bottom of the mountain, unless something gets in its way, say a ledge. The team accomplished this by "frustrating the system" — not allowing the material to do what it wants to do, which is to allow it to minimize its energy fully without constraints.
The researchers did this by using single atomic layers of two materials, lead titanate and strontium titanate, stacked in alternating layers on top of each other to build up a three-dimensional structure. Lead titanate is a ferroelectric, a polar material that has electrical polarization leading to positive and negative electric poles in the material. Strontium titanate is not a ferroelectric material. This mismatch forced the electric polarization vectors to take an unnatural path, curving back on themselves to make vortices, like water swirling down a drain.
The Berkeley team grew these layers on top of a crystal substrate whose crystals were intermediate in size between the two layered materials. This provided a second level of "frustration," as the strontium titanate layer tried to stretch to conform with the crystal structure of the substrate, and the lead titanate had to compress to conform to it. This put the whole system into a delicate but "frustrated" state with multiple phases randomly distributed in the volume.