UNIVERSITY PARK, Pa. — An unusual infrared emission detected by the Hubble Space Telescope from a nearby neutron star could indicate that the pulsar has features never before seen. The observation, by a team of researchers at Penn State, Sabanci University in Turkey, and the University of Arizona, could help astronomers better understand the evolution of neutron stars — the incredibly dense remnants of massive stars after a supernova. A paper describing the research and two possible explanations for the unusual finding appears Sept. 17 in the Astrophysical Journal.
“This particular neutron star belongs to a group of seven nearby X-ray pulsars — nicknamed ‘the Magnificent Seven’ — that are hotter than they ought to be considering their ages and available energy reservoir provided by the loss of rotation energy,” said Bettina Posselt, associate research professor of astronomy and astrophysics at Penn State and the lead author of the paper. “We observed an extended area of infrared emissions around this neutron star — named RX J0806.4-4123 — the total size of which translates into about 200 astronomical units, or 2.5 times the orbit of Pluto around the Sun, at the assumed distance of the pulsar.”
This is the first neutron star in which an extended emission has been seen only in the infrared. The researchers suggest two possibilities that could explain the extended infrared emission seen by the Hubble Space Telescope. The first is that there is a disk of material — possibly mostly dust — surrounding the pulsar.
“One theory is that there could be what is known as a ‘fallback disk’ of material that coalesced around the neutron star after the supernova,” said Posselt. “Such a disk would be composed of matter from the progenitor massive star. Its subsequent interaction with the neutron star could have heated the pulsar and slowed its rotation. If confirmed as a supernova fallback disk, this result could change our general understanding of neutron star evolution.”