Besides causing economic hardships for smallholder farmers in cocoa-producing countries, such production shortfalls ripple through the supply chain to the United States, the leading importer of cocoa beans, and to Pennsylvania, the top chocolate-producing state in the nation. Not only are Pennsylvania chocolate manufacturers affected by cocoa supply and demand -- the state's large dairy industry supplies as much as 15 percent of its milk for use in chocolate making.
The endowed program's accomplishments are many. Faculty and student researchers have created one of the first genetic maps of cocoa and contributed to the sequencing of the entire cocoa genome; have characterized a large number of genes involved in disease resistance and quality traits such as lipid and flavonoid biosynthesis; and have developed and published several innovative methods for the study of functional genomics in cacao.
The research group also developed a method -- somatic embryogenesis -- that enables the rapid propagation of elite cocoa plants. "One application of this process is in the production of disease-free plants, which is becoming more important for growers because of cocoa swollen shoot virus, a disease that severely limits production, particularly in Africa," said research program co-director Siela Maximova, senior scientist and professor of horticulture.
"This method of micropropagation has been field tested and now is used worldwide," she said. "More than 100 million cacao plants produced by somatic embryogenesis are now in farmers' fields. However, of the world's estimated 9 billion cocoa plants, just 5 to 15 percent produce about 80 to 90 percent of the yield. If we can use this method to rapidly clone high-yielding plants and get them into production, together with other agronomic improvements, we potentially could increase yields up to six-fold."
By helping farmers increase sustainable production of high-quality cocoa, the research can improve growers' access to the cocoa value chain, boosting incomes and standards of living in economically depressed regions, Guiltinan and Maximova said. It also can contribute to diversification of farmer income through co-crop products such as fruits, vegetables, flowers, nuts and timber species used as shade trees and to produce wood products.
In addition, cacao farms provide positive ecosystem services through carbon capture, soil stabilization and increased biodiversity.
Perhaps just as important as the program's scientific advances are the educational impacts, the researchers contend. Twenty-four graduate students have earned advanced degrees working with the program, representing the next generation of cocoa researchers. More than 40 postdoctoral scholars and visiting scientists from cocoa labs around the world have come to Penn State for research and training. Guiltinan and Maximova also have traveled the world giving workshops and seminars to share the knowledge as widely as possible.