UNIVERSITY PARK, Pa. — Bulky, buzzing and beeping hospital rooms demonstrate that monitoring a patient’s health status is an invasive and uncomfortable process, at best, and a dangerous process, at worst. Penn State researchers want to change that and make biosensors that could make health monitoring less bulky, more accurate — and much safer.
The key would be making sensors that are so stretchable and flexible that they can easily integrate with the human body’s complex, changing contours, said Larry Cheng, the Dorothy Quiggle Professor in Engineering and an affiliate of the Institute for Computational and Data Sciences. His lab is making progress on designing sensors that can do just that.
If biosensors that are both energy efficient and stretchable can be achieved at scale, the researchers suggest that engineers can pursue — and, in some cases, are already pursuing — a range of options for sensors that can be worn on the body, or even placed inside the body. The payoff would be smarter, more effective and more personalized medical treatment and improved health decision-making — without a lot of bulky, buzzing and beeping pieces of monitoring equipment.
Some of the ideas that researchers at Penn State and around the world are investigating include stretchable textiles that can incorporate biosensors. Paper-based sensors could also potentially be used to create smart bandages that can monitor the status of wounds. Temporary tattoos could even incorporate biosensors for health monitoring. For example, a biosensor-enabled tattoo could provide diabetes patients with instant estimates of their glucose levels.
The researchers recently released their analysis of the latest developments in flexible and stretchable biosensors.
More computational power
An antenna that can transmit data is the key element for these biosensor ideas, said Cheng, who is also a member of the Materials Research Institute at Penn State. But it can’t be an ordinary antenna. An antenna in the human body would require it to not just be durable, withstanding the extreme conditions of the body, but it also needs to be stretchable, so it can fit the contours of various organs and tissues in the body.
Creating those stretchable antennas require complex computations to model all of the different variations the design of the sensors can take in order to determine the best designs. And that means the design process alone requires lots of computational power, he added.
"We explore a lot of different patterns and designs when we are investigating these ideas, but this can create more parameters,” Cheng said. “This can become a problem because it’s difficult to find the right design with all of the different parameters. That’s why we need more computational power — This additional computational power can help us play with the different parameters and find out the effect of each one. Then we can figure out how to optimize them."
The team also wants to see how mechanical and electromagnetic properties are changed as the device changes shape.
“We need to leverage the computational resources to design this efficient antenna that can be stretchable, but, more importantly, with this stretchable antenna, we can do a lot of things because if we want to get the place where these sensors are transmitting data, this antenna is the key element that you can’t get around,” he said.