UNIVERSITY PARK, Pa. -- Cocoa farmers this year will lose an estimated 30 to 40 percent of their crop to pests and disease, and with chocolate prices having risen globally by roughly two-thirds in the past decade, concern is growing about sustainability in cocoa production. Of particular concern are the environmental impact and human health risks of toxic agrichemicals – organochloride insecticides and heavy-metal-based fungicides – used in cocoa production to fight pests and disease.
But scientists at Penn State's Huck Institutes of the Life Sciences have found – in a safe, biodegradable compound – a potential alternative to the hazardous antifungal agents currently being used to combat one of the most damaging cacao diseases, Phytophthora pod rot (also known as Black Pod), responsible for an estimated 20 to 30 percent loss in yield annually.
Mark Guiltinan and Yufan Zhang, with Siela Maximova and in collaboration with Phil Smith of the Metabolomics Core Facility, have discovered that spraying the leaves of the Theobroma cacao tree with a low-concentration glycerol solution triggers the plant's defense response and enhances its natural disease resistance.
“Right now,” says Guiltinan, “cocoa farmers are using fungicides and other chemicals that are very effective but are also highly toxic compounds, very persistent in the soil, and relatively expensive. Glycerol, on the other hand, is extremely non-toxic; it's super safe, super cheap, biodegradable, and it triggers the plants' defenses very efficiently – it only takes small amounts to trigger the whole plant defense system.
“The plant immune system,” he continues, “is made up of many different components that – imagine, if you can – are like little micromachines. It has five or ten major components that all have little safeties on them, and safeties on the safeties, and things that turn them on and off and regulate them. Some of these components are always running at some level and the system is a complicated thing on a hair trigger, always ready to go. You just give it a little trip and off it goes – all the little micromachines will be activated in a certain sequence and the whole thing takes off, so glycerol is one of the ways we've found to come in and trigger this to happen.”
Glycerol, a simple sugar-alcohol compound called a polyol, is a colorless, odorless, viscous liquid commonly used in soaps and other cosmetic products and is produced in different ways, including as a byproduct of biofuel production where it is removed from plant or animal fats in a process known as transesterification.
“When you make biodiesel,” Guiltinan says, “you end up with a massive amount of glycerol that nobody really has a good use for, and it's super cheap because of that.”
Zhang adds that the production of glycerol from biofuels "is projected to increase ten-fold in the next ten years, as high as six times the projected demand, and people are already generating excessive amounts of glycerol that they don't know what to do with. There are journals focusing specifically on the use of glycerol and other biodiesel products, and research is being done on all different kinds of byproducts from the biodiesel industry to find out what how these compounds could be used.”